Metrics reference
This page summarizes metrics produced by error_parity.evaluation.
Performance metrics
accuracy: fraction of correct predictions.
tpr (recall): true positive rate.
fnr: false negative rate (1 - TPR).
fpr: false positive rate.
tnr: true negative rate (1 - FPR).
precision: TP / predicted positives.
ppr: positive prediction rate.
squared_loss: mean squared error on scores vs. labels.
log_loss: logistic loss on scores vs. labels.
Fairness aggregations
For each metric m and groups a, b, we compute:
m_ratio = min(m_a, m_b, ...) / max(m_a, m_b, ...)m_diff = max(m_a, m_b, ...) - min(m_a, m_b, ...)
Equalized odds
equalized_odds_ratio = min(fnr_ratio, fpr_ratio)equalized_odds_diff = max(tpr_diff, fpr_diff)equalized_odds_diff_l{1,2,inf}via (ell_1), (ell_2), (ell_infty) norms over (TPR, FPR) pairwise differences.
Groupwise outputs
Set return_groupwise_metrics=True in error_parity.evaluation.evaluate_fairness() or error_parity.evaluation.evaluate_predictions() to include per-group metrics like tpr_group=0, fpr_group=1, etc.