Metrics reference ================= This page summarizes metrics produced by :mod:`error_parity.evaluation`. Performance metrics ------------------- - **accuracy**: fraction of correct predictions. - **tpr (recall)**: true positive rate. - **fnr**: false negative rate (1 - TPR). - **fpr**: false positive rate. - **tnr**: true negative rate (1 - FPR). - **precision**: TP / predicted positives. - **ppr**: positive prediction rate. - **squared_loss**: mean squared error on scores vs. labels. - **log_loss**: logistic loss on scores vs. labels. Fairness aggregations --------------------- For each metric ``m`` and groups ``a, b``, we compute: - ``m_ratio = min(m_a, m_b, ...) / max(m_a, m_b, ...)`` - ``m_diff = max(m_a, m_b, ...) - min(m_a, m_b, ...)`` Equalized odds -------------- - ``equalized_odds_ratio = min(fnr_ratio, fpr_ratio)`` - ``equalized_odds_diff = max(tpr_diff, fpr_diff)`` - ``equalized_odds_diff_l{1,2,inf}`` via \(\ell_1\), \(\ell_2\), \(\ell_\infty\) norms over (TPR, FPR) pairwise differences. Groupwise outputs ----------------- Set ``return_groupwise_metrics=True`` in :func:`error_parity.evaluation.evaluate_fairness` or :func:`error_parity.evaluation.evaluate_predictions` to include per-group metrics like ``tpr_group=0``, ``fpr_group=1``, etc.