Source code for folktexts.dataset

"""General Dataset functionality for text-based datasets.

TODO
----
- Re-assess if the Dataset needs permanent access to the task;
    - The task is already in the LLMClassifier;
    - Maybe the Dataset should simply receive the `task` object whenever a
    method needs it.
"""
from __future__ import annotations

import logging

import numpy as np
import pandas as pd

from ._utils import hash_dict, is_valid_number
from .task import TaskMetadata

DEFAULT_TEST_SIZE = 0.1
DEFAULT_VAL_SIZE = 0.1
DEFAULT_SEED = 42


[docs] class Dataset: def __init__( self, data: pd.DataFrame, task: TaskMetadata, test_size: float = DEFAULT_TEST_SIZE, val_size: float = DEFAULT_VAL_SIZE, subsampling: float = None, seed: int = DEFAULT_SEED, ): """Construct a Dataset object. Parameters ---------- data : pd.DataFrame The dataset's data in pandas DataFrame format. task : TaskMetadata The metadata for the prediction task. test_size : float, optional The size of the test set, as a fraction of the total dataset size, by default 0.1. val_size : float, optional The size of the validation set, as a fraction of the total dataset size, by default 0.1. subsampling : float, optional Whether to use sub-sampling, and which fraction of the data to keep. By default will not use sub-sampling (`subsampling=None`). seed : int, optional The random state seed, by default 42. """ self._data = data self._task = task # Validate task if not isinstance(self._task, TaskMetadata): raise ValueError( f"Invalid `task` type: {type(self._task)}. " f"Expected `TaskMetadata`.") # Validate data for this task task.check_task_columns_are_available( available_cols=data.columns.to_list() ) self._test_size = test_size self._val_size = val_size or 0 self._train_size = 1 - self._test_size - self._val_size assert self._train_size > 0 self._seed = seed self._rng = np.random.default_rng(self._seed) # Make train/test/val split self._train_indices, self._test_indices, self._val_indices = ( self._make_train_test_val_split( self._data, self.test_size, self.val_size, self._rng) ) # Subsample the train/test/val data (if requested) self._subsampling = None if subsampling is not None: self.subsample(subsampling) @property def data(self) -> pd.DataFrame: return self._data @data.setter def data(self, new_data: pd.DataFrame) -> pd.DataFrame: # Check if task columns are in the data self.task.check_task_columns_are_available( new_data.columns.to_list() ) # Update data self._data = new_data # Reset train/test/val indices self._train_indices, self._test_indices, self._val_indices = ( self._make_train_test_val_split( self._data, self.test_size, self.val_size, self._rng) ) # Set subsampling to None # (data was manually set, any subsampling will have to be re-done) self._subsampling = None return self._data @property def task(self) -> TaskMetadata: return self._task @task.setter def task(self, new_task: TaskMetadata): # Check if task columns are in the data new_task.check_task_columns_are_available( self.data.columns.to_list() ) self._task = new_task @property def train_size(self) -> float: return self._train_size @property def test_size(self) -> float: return self._test_size @property def val_size(self) -> float: return self._val_size @property def subsampling(self) -> float: return getattr(self, "_subsampling", None) @property def seed(self) -> int: return self._seed @property def name(self) -> str: """A unique name for this dataset.""" subsampling_str = f"subsampled-{self.subsampling:.3}" if self.subsampling else "full" seed_str = f"seed-{self._seed}" hash_str = f"hash-{hash(self)}" return f"{self.task.name}_{subsampling_str}_{seed_str}_{hash_str}" @staticmethod def _make_train_test_val_split( data, test_size: float, val_size: float, rng: np.random.Generator, ) -> tuple[np.ndarray, np.ndarray, np.ndarray]: # Permute indices indices = rng.permutation(len(data)) # Split train/test train_size = 1 - test_size - val_size train_indices = indices[: int(len(indices) * train_size)] test_indices = indices[ len(train_indices): int(len(indices) * (train_size + test_size))] # Split val if requested if val_size is not None and val_size > 0: val_indices = indices[ len(train_indices) + len(test_indices):] else: val_indices = None return ( train_indices, test_indices, val_indices, ) def _subsample_train_test_val_indices(self, subsampling: float) -> Dataset: """Subsample the dataset in-place.""" # Check argument is valid if not is_valid_number(subsampling) or not (0 < subsampling <= 1): raise ValueError(f"`subsampling={subsampling}` must be in the range (0, 1]") # Update train/test/val indices new_train_size = int(len(self._train_indices) * subsampling + 0.5) new_test_size = int(len(self._test_indices) * subsampling + 0.5) self._train_indices = self._train_indices[: new_train_size] self._test_indices = self._test_indices[: new_test_size] if self._val_indices is not None: new_val_size = int(len(self._val_indices) * subsampling + 0.5) self._val_indices = self._val_indices[: new_val_size] # Log new dataset size msg = ( f"Train size: {len(self._train_indices)}, " f"Test size: {len(self._test_indices)}, " f"Val size: {len(self._val_indices) if self._val_indices is not None else 0};" ) logging.info(msg) return self
[docs] def subsample(self, subsampling: float): """Subsamples this dataset in-place.""" if subsampling is None: logging.warning(f"Got `subsampling={subsampling}`, skipping...") return self # Update train/test/val indices self._subsample_train_test_val_indices(subsampling) # Update subsampling factor self._subsampling = (self._subsampling or 1) * subsampling return self
def _filter_inplace( self, population_feature_values: dict, ) -> "Dataset": """Subset the dataset in-place: keep only samples with the given feature values.""" # Check argument is of valid type if not isinstance(population_feature_values, dict): raise ValueError( f"Invalid `population_feature_values` type: " f"{type(population_feature_values)}.") # Check argument keys are valid columns if not all(key in self.data.columns for key in population_feature_values.keys()): raise ValueError( f"Invalid `population_feature_values` keys; columns don't exist " f"in the dataset: {list(population_feature_values.keys())}.") # Create boolean filter based on the given feature values population_filter = pd.Series(True, index=self.data.index) for key, value in population_feature_values.items(): population_filter &= (self.data[key] == value) # Update train/test/val indices train_pop_filter = population_filter.iloc[self._train_indices] test_pop_filter = population_filter.iloc[self._test_indices] val_pop_filter = population_filter.iloc[self._val_indices] if self._val_indices is not None else None self._train_indices = self._train_indices[train_pop_filter] self._test_indices = self._test_indices[test_pop_filter] self._val_indices = self._val_indices[val_pop_filter] if self._val_indices is not None else None return self
[docs] def filter(self, population_feature_values: dict): """Filter dataset rows in-place.""" self._filter_inplace(population_feature_values)
[docs] def get_features_data(self) -> pd.DataFrame: return self.data[self.task.features]
[docs] def get_target_data(self) -> pd.Series: return self.data[self.task.get_target()]
[docs] def get_sensitive_attribute_data(self) -> pd.Series: if self.task.sensitive_attribute is not None: return self.data[self.task.sensitive_attribute] return None
[docs] def get_data_split(self, split: str) -> tuple[pd.DataFrame, pd.Series]: if split == "train": return self.get_train() elif split == "test": return self.get_test() elif split == "val": return self.get_val() else: raise ValueError(f"Invalid split '{split}'")
[docs] def get_train(self): train_data = self.data.iloc[self._train_indices] return train_data[self.task.features], train_data[self.task.get_target()]
[docs] def sample_n_train_examples( self, n: int, reuse_examples: bool = False, ) -> tuple[pd.DataFrame, pd.Series]: """Return a set of samples from the training set. Parameters ---------- n : int The number of example rows to return. reuse_examples : bool, optional Whether to reuse the same examples for consistency. By default will sample new examples each time (`reuse_examples=False`). Returns ------- X, y : tuple[pd.DataFrame, pd.Series] The features and target data for the sampled examples. """ # TODO: make sure examples are class-balanced? if reuse_examples: example_indices = self._train_indices[:n] else: example_indices = self._rng.choice(self._train_indices, size=n, replace=False) return ( self.data.iloc[example_indices][self.task.features], self.data.iloc[example_indices][self.task.get_target()], )
[docs] def get_test(self): test_data = self.data.iloc[self._test_indices] return test_data[self.task.features], test_data[self.task.get_target()]
[docs] def get_val(self): if self._val_indices is None: return None val_data = self.data.iloc[self._val_indices] return val_data[self.task.features], val_data[self.task.get_target()]
def __getitem__(self, i) -> tuple[pd.DataFrame, pd.Series]: """Returns the i-th training sample.""" curr_indices = self._train_indices[i] curr_data = self.data.iloc[curr_indices] return curr_data[self.task.features], curr_data[self.task.get_target()] def __iter__(self): """Iterates over the training data.""" for i in range(len(self._train_indices)): yield self[i] def __len__(self) -> int: return len(self.data) def __hash__(self) -> int: hashable_params = { "data_shape": self.data.shape, "task": hash(self.task), "train_size": len(self._train_indices), "test_size": len(self._test_indices), "val_size": len(self._val_indices) if self._val_indices is not None else 0, "subsampling": self.subsampling or 1, "seed": self.seed, } return int(hash_dict(hashable_params), 16)