FAQ === Do I need to retrain my model? ------------------------------ No. ``error-parity`` is a postprocessing method that wraps a score-based predictor. What if my groups are not 0..G-1? --------------------------------- Encode them to integers starting at 0 before calling ``fit`` or prediction. Noncontiguous encodings raise a ``ValueError``. Can I use decision_function instead of predict_proba? ----------------------------------------------------- Yes, pass ``predictor=lambda X: model.decision_function(X)``. Ensure higher values indicate higher likelihood of the positive class. What tolerance should I use? ---------------------------- Start with ``tolerance=0.0`` (strict). Increase gradually to explore trade-offs using the postprocessing curve utilities. How do I get uncertainty estimates? ----------------------------------- Use :func:`error_parity.evaluation.evaluate_predictions_bootstrap` and the plotting utilities for confidence intervals on frontiers.